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Abstract-The square of a narrowband Gaussian process is used to simulate sunspot cycles at computer 
speeds. The method is appealing because: (i) the model is extremely simple yet its physical basis, a 
simple resonance, is a widely occurring natural phenomenon, and (ii) the model recreates practically all 
of the features of the observed sunspot record. In particular, secular cycles and recurring extensive 
minima are characteristic of narrowband Gaussian processes. Additionally, the model lends itself to 
limited prediction of sunspot cycles. 

Since the discovery of the cyclic behavior of sunspots by Schwabe in 1843, many 
authors have referred to the sunspot record as an example of naturally occurring 
periodic behavior. Yule (1927) characterized the sunspot numbers as a “disturbed 
harmonic function” which he likened to the motion of a pendulum which boys are 
pelting with peas. Time series analysis texts (Anderson, 1971; Koopmans, 1974; 
Bloomfield, 1976) and statistical works (Spencer-Smith, 1944; Moran, 1954) com- 
monly cite the sunspot number series as a function which is more or less periodic. 
The noisy, but nearly periodic, character of the sunspot record has led the authors 
to a very simple model of solar activity which mimics the observed sunspot 
numbers to a surprising degree. The observed annual mean sunspot numbers 
(Eddy, 1976) and simulated annual mean sunspot numbers (produced using meth- 
ods described in this paper) are shown in Fig. 1 .  

While the annual mean sunspot numbers display a more or less periodic behav- 
ior, they are of necessity always positive. These two facts suggest a model based 
on narrowband noise (the periodic part) which is squared (to insure positivity). If 
one assumes the noise part to be Gaussian, then the square of the Gaussian noise 
is distributed as a Chi-square distribution with one degree of freedom. Indeed, the 
annual mean sunspot numbers since 1650 are reasonably well characterized by 
such a distribution (see Fig. 2). 

In order to model the actual annual mean sunspot numbers more closely, two 
cosmetic features have been added: (a) a broadband (“white”) noise, and (b) a 
rise/fall correction to simulate the rapid rise and slower fall observed in the larger 
sunspot cycles. This completes the model which was used to produce the simu- 
lated data plotted in Fig. 1 .  Of course, the rise/fall correction slightly distorts the 
distribution function from a perfect Chi-square distribution and, in fact, the simu- 
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lated distribution is closer to the actually observed distribution than is the Chi- 
square distribution as shown in Fig. 2. 

For computer simulation, the narrowband noise plus the broadband noise is 
generated by an Auto Regressive, Moving Average (ARMA) model (Box and 
Jenkins, 1970). The output of the ARMA model is squared and a rise/fall correc- 
tion applied. The simulation equations are as follows: 

Z, = a,  = 0 for n < 1 
Z,  = 4, Z,  - I + 42 Z, - 

(initial conditions) 
+ a, - 8, a,  - -e2 a ,  - (ARMA model) 

where* 4, = 1.90693 8, = 0.78512 
+2 = -0.98751 0 2  = -0.40662 
Z, are the output of the ARMA model, and 
a, are random, normal deviates with zero mean and standard deviation 

ua= 0.4. 
X, = Z,2 (square of 2 3  
Y , = X,  + a(X,  - , - X, - 2)2 (rise/fall correction) 

where CY = 0.03, and the Y , simulate annual mean sunspot numbers. 
In terms of “physical interpretations”, the ARMA model corresponds to the 

filtering of “white”, Gaussian noise by a filter with a bandwidth of about 0.002 
cycles/year centered at 1/22 cycles per year. This corresponds to a “Q” of about 
23. Squaring the output effectively doubles the frequency to 1/11 cycles per year. 

Using the ARMA coefficients, the model was run to produce thousands of years 
of simulated sunspot numbers. The cycles shown in Fig. 3 are representative of 
this simulated data. 

Certain portions of Fig. 3 look very familiar and would rapidly be identified as 
sunspot cycles by an uncritical observer. Throughout hundreds of thousands of 
years of simulated cycles, there are frequent spans of data that are very remini- 
scent of the actually observed sunspot record. Indeed, one can find, without much 
trouble, patterns in cycle-to-cycle amplitude almost exactly like those described 
in the literature and sometimes used for sunspot cycle forecasts. 

A striking feature of the simulated sunspot data is the occasional (yet fairly 
regular) occurrence of extensive sunspot minima (referred to in this paper as Eddy 
minima). If such a minimum is defined (arbitrarily) as a period of at least 50 years 
during which the annual mean sunspot number does not exceed 20, then these 
minima are observed to occur in the simulated series at the rate of twice per 
thousand years, on the average. Some extremely long minima show up in the 
simulations. For example, an Eddy minimum spanning more than 500 years is 
shown in the bottom row of Fig. 3. 

*Since the coefficients 4,. c#J~, 0 , .  and O2 interact with each other, the number of significant digits given 
here is very large relative to the confidencc intervals of the “physical” parameters. Dropping digits can 
materially alter the model beyond what one might normally expect, because roots of the “operator” 
equation are changed significantly. This is often an annoying feature of digital filters and does not imply 
exactness in the overall model. 
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Fig. 1. Actual and simulated annual, mean sunspot numbers. 
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Fig. 2. Cumulative distributions for observed annual mean sunspot numbers (circles) and 
simulated annual mean sunspot numbers (triangles) divided by their means for 328 years. 
The solid curve is the Chi-square distribution for one degree of freedom. 



162 J .  A .  Barnes et al. 

I I 

Fig. 3.6000 consecutive years of simulated annual mean sunspot numbers. Each line is 
lo00 years long and the lines are separated by a relative sunspot number of 400. 
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The model simulates (a) the approximately eleven-year period, (b) the variabil- 
ity of period, (c) the relative variability of amplitude (including Eddy minima), (d) 
the average amplitude, (e) the short term (year-to-year) fluctuations, (f) the rapid 
rise and slow decay, (g) the observed distribution of values, and (h) the general 
appearance of sunspot cycles. Further, the model is extremely simple. A computer 
program in Basic which simulates the sunspot cycles is shown below: 

100 X = RND (-2) 
110 C = .78512 : D = - .40662 : E = .4 : F = .03 : G = 0 

A = 1.90693 : B = - .98751 

130 FOR N = 1 TO 300 
140 IF G = 1 THEN GOTO 180 

160 X = RND (X) : K = Y E COS (6.28318 X) 
170 G = 1 : GOTO 190 
180 G = 0 : K = Y E SIN (6.28318 X) 

150 X = RND (X) : Y = SQR ( - 2 LOG (X)) 

1 9 0 H = A  I + B  J + K - C  L - D  M 
2 0 0 M = L : L = K : S = I  I - J  J 
2 1 0 T = H  H + F  S S 
220 PRINT T 
230 J = I :  I = H 
240 NEXT N 
250 STOP 
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